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Abstract: The asymmetric dihydroxylation (AD) reaction of vinylphosphonates with AD-mix-o
and -P reagents was successfully applied to the enantioselective synthesis of threo-o, B-
dihydroxyphosphonates. B-Aryl substituents on the vinyl phosphonates were found to be good
directors for the reaction with respect to the yield and enantioselectivity. The utility of chiral o,
B-dihydroxyphosphonate 2¢ was illustrated by the stereocontrolled synthesis of (45,5S)-4-
diethylphosphono-2,2-dimethyl-5-hydroxymethyl-1,3-dioxolane 6, a potentially useful chiron
for asymmetric synthesis of a-heteroatom-substituted phosphonates.

The transformations of phosphate biomolecules to the phosphonate isosteres by replacement of the labile ester
oxygen with a methylene group is one of the most interesting subjects in medicinal chemistry to elucidate their
antimetabolite activities (Fig. 1).1 A number of phosphonate analogues of phosphate biomolecules are known to
show the expected activities.! Introductions of an additional functional group such as hydroxy- and fluoro
substituents at the o-position of the phosphonates are sometimes required to achieve sufficient biological
activities2 (Fig. 1). While the stereochemistry at a-position in these substituted phosphonates should be
important for the biological activities, little information on the biological effect of the three-dimensional
structures is available due to a lack of efficient stereocontrolled methods for the synthesis of a-heteroatom-

substituted phosphonates.

Fig. 1 o X 9
R_O—F:—OH _ R—CH—F:—OH X=H, OH, F
OH OH
phosphate biomolecule phosphonate analogues

Our interest in this area centers on the development of versatile phosphonic containing chirons for the
synthesis of various o-heteroatom-substituted phosphonic acid derivatives which would be of biological
interest. The chiral glycol phosphonates 2 would constitute one of the most useful phosphonic chirons for this
purpose, if efficient stereoselective syntheses of 2 were available and subsequently transformed to the suitably
functionalized and protected forms such as 5 and 6. Of various strategies for the stereoselective synthesis of 2,
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the catalytic asymmetic dihydroxylation (AD) stmtegy3 of vinylphosphonates 1 would be the most desirable and
efficient. In this paper we disclose the results on the osmium-catalyzed AD reaction of vinylphosphonates to
yield chiral glycol phosphonates of high enantiomeric purity and an application to the synthesis of (45,55)-4-
diethylphosphono-2,2-dimethyl-5-hydroxymethyl-1,3-dioxolane 6, a useful phosphonic chiron for the
stereocontrolled synthesis of a-heteroatom-substituted phosphonic acid derivatives.

AD reactions of vinylphosphonates 1a-e> were carried out at 25 °C for 48 h with AD-mix-ct or -B reagents9
under the standard conditions3 in the presence of additional potassium osmate (0.8 mol %) (Scheme 1). The
results are summarized in Table 1. All reactions gave the desired threo-o., B-dihydroxyphosphonates 2a-¢10,11

in modest to good yields.

Scheme 1
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Table 1. AD reaction of vinylphosphonates 1a-e with AD-mix-a and - reagents.

Entry Reagent R (2)3 Yield(%) Ee(%)?  [alp®

1 AD-mix-o Me (2a) 48 33 +3.73

2 AD-mix-o CgHs (2b) 42 91 +33.7

3 AD-mix-o 4-MeOCgH4 (2¢) 71 >05 +28.8

4 AD-mix-$ 4-MeOCgH4 (ent-2¢) 69 >08 -31.6

5 AD-mix-a.  PhCHO(CHyp); (2d)4 30 44 -6.55

6 AD-mix-f  -BuMepSiOCH) (ent-2e)¢ 65 38 -8.25

@ Obtained as oils. & Determined by NMR (IH and/or 31P) analysis of the corresponding
bis-MTPA esters derived from (+)- and (-)-MTPA. € Measured in MeOH (c 1.0) at 20 °C..
d Absolute stereochemistry was not determined. € Stereochemistry was determined by
chemical correlation to 6.12

While the AD reaction of vinylphosphonates 1a, 1d, and le possessing alkyl substituens at the B-position
proceeded with poor enantioselectivities in modest yields (entries 1, 5, and 6), remarkably high
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enantioselectivities (>95% ee) were attained from the reactions with B-arylvinylphosphonates 1b, ¢ (entries 2-4);
the p-methoxyphenyl group was found to be superior to a phenyl group as a director in terms of enantioselection
and chemical yield (entries 2 vs 3).

The relative stereochemistry of 2¢ was confirmed to be threo after conversion to the acetonides 3a (2,2-
dimethoxypropane, camphorsulfonic acid, benzene]. The dihedral angles between HCCP were measured with
the lowest energy conformations of rrans-3c¢ and cis-3c produced by MOPAC calculations. 13 On the basis of
these considerations and the phosphorus version of the Karplus equations,14 a large vicinal proton-phosphorus
coupling constant (3J pu=17.2 Hz) is expected for trans-3¢, while the small coupling constant (3JPH=1.7 Hz) is
assumed for cis-3c (Fig. 2). The close analysis of the IH-NMR spectrum (300 MHz, CDCIl3) of 3c established
the vicinal coupling constants to be 9.8 Hz, strongly suggesting its trans relative stereochemistry.
Hydrogenolysis of 3b, ¢ over Pd(OH); in MeOH gave o.-hydroxyphosphonates 4b, [a]p2? +21.2 (¢ 0.9,
CHCI3), and 4c, [¢]p20 +17.4 (c 0.6, CHCI3), respectively. Observed optical rotation of 4b revealed that it
was antipodal to that reported previously.l5 Thus, the absolute stereochemistry of 2¢ was unambiguously
established as 15, 25.

Fig. 2
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Having established an efficient method for the stereoselective synthesis of 2¢, our attention was focussed on
its transformations to 5 and 6, useful phosphonic containing chirons possessing suitable functionalities.
Oxidative degradation of the p-methoxypheny! group in 3¢ with RuCl3-NalO4 under the conditions of Martin, 16
followed by esterification with CHpNy gave the methyl ester 5,10 falp20 —26.2 (¢ 1.0, CHCI3), as an oil in
95% yield. The observed vicinal proton-phosphorus coupling constant (3JPH=13.7 Hz) is consistent with the
caluculated one (3JPH=17.4 Hz) for trans-5 (Fig. 2). Treatment of 5§ with NaBH4 in MeOH selectively reduced
the methyl ester to give alcohol 6,10 [a],20 ~15.5 (¢ 1.0, MeOH), in 80% yield.

In conclusion we have developed an efficient method for stereoselective synthesis of phosphonic containing
chirons 5 and 6 with practically useful levels of enantiomeric purity by an application of AD-reaction of
vinylphosphonates. Further work on utility of 6 in the field of asymmetric synthesis of a-heteroatom-substituted

phosphonic bioisosteres of phosphate antimetabolites is in progress in our laboratory.
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All new compounds gave satisfactory spectroscopic and analytical data.

2¢: an oil; IH-NMR (CDCl3, 300 MHz) & 7.34 (2H, d, J=6.8 Hz), 6.88 (2H, d, /=6.8 Hz), 5.08-5.02
(1H, m), 4.20-4.09 (4H, m), 3.99 (1H, ddd, J=3.5, 8.2, 8.2 Hz), 3.94-3.88 (1H, m), 3.79 (3H, s),
3.75-3.67 (1H, m), 1.32 (3H, t, J=6.8 Hz), 1.27 (3H, t, J=6.8 Hz); 3|P-NMR (CDCl3, 160 MHz) &
22.56; MS m/z 340 (M*); IR (neat) 3344, 1246, 1029 cm-1. 3¢: an oil; [a]p2? +6.87 (c 1.0, CHCl3); 1H-
NMR (CDCl3, 300 MHz) 8 7.37 (2H, d, /=8.8 Hz), 6.89 (2H, d, J=8.8 Hz), 5.20 (1H, dd, J=9.8, 9.8
Hz), 4.2-4.0 (4H, m), 3.99 (1H, dd, J=9.1, 2.4 Hz), 3.80 (3H, s), 1.56 (3H, s), 1.55 (3H, s), 1.24 (3H,
t, J=7.1 Hz), 1.21 (3H, dd, J=7.1 Hz); 31P-NMR (CDCl3, 160 MHz) & 19.0; MS m/z 329 (M*-15); IR
(neat) 3484, 1250, 1024 cm-1. 5: an oil; IH-NMR (CDCl3, 400 MHz) 3 4.74 (1H, dd, J=13.7, 7.6 Hz),
4.48 (1H, dd, J=7.6, 1.2 Hz), 4.3-4.1 (4H, m), 3.81 (3H, s), 1.52 (3H, s), 1.44 (3H, s), 1.35 (3H, t,
J=1.0 Hz), 1.34 (3H, J=7.0 Hz); 31P-NMR (CDCl3, 160 MHz) 3 18.0; MS m/z 297 (M*+1), 281 (M*-
15); IR(neat) 1757, 1256, 1050 cm™1. 6: an oil; IH-NMR (CDCl3, 300 MHz) § 4.4-4.3 (1H, m), 4.3-4.15
(4H, m), 4.09 (1H, dd, J=9.4, 2.5 Hz), 3.90 (1H, ddd, J=12.1, 3.9, 3.7 Hz), 3.74 (1H, ddd, J=12.1,
9.0, 3.3 Hz), 2.37 (1H, dd, J=9.0, 3.7 Hz), 1.46 (3H, s), 1.44 (3H, s), 1.37 (3H, t, J=7.1 Hz), 1.36
(3H, 1, J=7.1 Hz); 3]P-NMR (CDCl3, 160 MHz) 8 19.7; IR (neat) 3407, 1647, 1240, 1024 cm-1,
Stereochemistry of 2a was determined by its comparison with the authentic sample prepared through
titanium-mediated threo-selective hydrophosphonylation of (§)-o-benzyloxypropionaldehyde, followed by
debenzylation: Yokomatsu, T.; Yoshida, Y.; Shibuya, S. J. Org. Chem. 1994, in press.

Desilylation of ent-3e [n-BugNF / THF], derived from ent-2e, gave ent-6, [a]p20+6.14 (¢ 1.0, MeOH), in
quantitative yield.

Calculations were performed by MOPAC v 6.10 (PM 3) implemented in CAChe Worksystem
(SONY/Tektronix Corporation) after MM 2 optimization of trans-3c¢ and cis-3c.
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